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a b s t r a c t

Some rational functions of the Padé type, y¼y(x; n,m), were applied to the calibration curve method
(CCM), and compared with a parabolic function. The functions were tested on the results obtained from
calibration of ion-selective electrodes: NH4-ISE, Ca-ISE, and F-ISE. A validity of the functions y¼y(x; 2,1),
y¼y(x; 1,1), and y¼y(x; 2,0) (parabolic) was compared. A uniform, integral criterion of nonlinearity of
calibration curves is suggested. This uniformity is based on normalization of the approximating functions
within the frames of a unit area.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the calibration curve method (CCM), commonly considered
as the preliminary step in different methods of chemical analysis,
the linear functions are usually applied. The degree of linearity of
such lines is expressed by the coefficient of determination R2

(squared linear correlation coefficient, R) value [1]. When referred
to nonlinear relationships, except the nonlinear correlation coeffi-
cient [2], there are no valuable manners of such an evaluation; it
particularly refers to curvilinear relationships approximated by
rational functions of the Padé type [3–5], expressed as the ratio of
two polynomial functions Pn(x) and Qm(x), of nth and mth degree,
respectively [6]

y¼ yðx;n;mÞ ¼ PnðxÞ
QmðxÞ

ð1Þ

The Padé approximants still attract attention of physicists and
mathematicians; an extensive list of the related papers is provided
in [7]. It was found that various experimental data can be elegantly
modeled with use of rational functions [8–14].

The functions of the Padé type appeared to be a valuable tool
for modeling the titration curves referred to complex acid–base
systems; see [15,16] and other references cited therein, or to
a complex redox system [17]. There were shown that rational
functions provide much better approximation than polynomial
functions with the same number of parameters involved,
expressed in terms of natural or converted variables [18–22]. This
method is computationally efficient and manifests a high robust-
ness [6,23]. The Padé approximants are now employed in diverse
contexts, indicated in [24].

This paper refers to the normalization of calibration curves
applied for determination of some ions: NH4

þ , Ca2þ and F� , with
use of ion-selective electrodes (ISEs), within defined ranges of
concentrations of particular ions. Nonlinearity of the curves within
these ranges is measured according to an integral criterion of
nonlinearity, with use of rational and parabolic functions. Applic-
ability of particular functions for modeling purposes has also been
taken into account.

2. Some rational functions and normalization principle

Let us refer first to the rational function (A-model)

y¼ a0þa1 Uxþa2 Ux2

1þa3 Ux
ð2Þ
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i.e., n¼2 and m¼1 in Eq. (1). On this basis, one can also
consider some simplified forms of Eq. (2), referred to the options:
a2¼0 (B-model), or a3¼0 (C-model). In particular, for the C-model
we get the parabolic function

y¼ a0þa1 Uxþa2 Ux2 ð3Þ
where Qm¼Q0¼1. Function (2) and its simplified forms will be
applied for CCM purposes.

Let us take the set of experimental data {(xj, yj) | j¼1,…,N},
where x1ox2o…oxN. Denoting Δx¼xN � x1 and Δy¼yN � y1,
for the monotonic function (yj〈yjþ1 or yj〉yjþ1 at j¼1,…, N�1), we
introduce the variables u and v through the relations:

x¼ x1þu �Δx and y¼ y1þv �Δy ð4Þ
Applying them to function (2), after a lengthy but straightforward
algebra, we get the relation for the A-model (see Appendix A)

v¼ vðuÞ ¼ αUuþβUu2

1þγ Uu
ð5Þ

where

α¼ ða1þ2a2 Ux1�a3y1Þ
1þa3x1

U
Δx
Δy

ð6Þ

β¼ a2
1þa3x1

U
ðΔxÞ2
Δy

ð7Þ

γ ¼ a3
1þa3x1

UΔx ð8Þ

Note that v(0)¼0. At (u, v)¼(1, 1), we have the relation

αþβ¼ 1þγ; i:e: γ ¼ αþβ – 1 ð9Þ
The parameters a0, …, a3 in Eqs. (6)–(8) are obtained according to
the least squares method (LSM) applied to the regression equation

yj ¼ a0þa1 Uxjþa2 Uxj
2�a3 Uxj Uyjþεj ð10Þ

derived from Eq. (2). Note that the formulas (6)–(8) do not involve
a0, and the value s¼Δy/Δx, inherent in α and β (Eqs. (6) and (7)),
is the mean slope of the curve y¼y(x) (Eq. (2)) within the 〈x1, xN〉
interval. For the models B (a2¼0), C (a3¼0), we have (B) β¼0, (C)
γ¼0 respectively. In these cases, Eq. (5) simplifies into the
relations [25,26]:

B v¼ αUu
1þγ Uu

ðwhere γ ¼ α–1Þ ð11Þ

ðCÞ v¼ αUuþβUu2 ðwhere β¼ 1–αÞ ð12Þ
The relations, Eq. (5) with Eq. (9), Eq. (11) and Eq. (12), are in close
relevance to the homotopy problem [27,28].

On the basis of formula (5) or its simpler forms, referred to the
models, B and C, any set of experimental points {(xj, yj) ∣ j¼1,…,N}
in the CCM can be presented within the frames of coordinates (u,
v), where u A 〈0, 1〉and v A 〈0, 1 〉; see Fig. 1. In all instances, the
curve v¼v(u) links the points (0, 0) and (1, 1) on the (u, v) plane.
A reference is the linear function y¼a0þa1 � x (a2¼a3¼0 in Eq.
(2)), where we get the straight line

v¼ u ð13Þ
connecting the points (0, 0) and (1, 1) on the (u, v) plane.

In order to use the formulas v¼v(u), applicable for calculations
made according to tables with elementary integrals, one can apply
some transformations of Eqs. (5), (11) and (12); namely, we have
(see Appendix A) for the A-model

v¼ αUuþβUu2

1þγ Uu
¼ β
γ
UuþαUγ�β

γ2
�αUγ�β

γ3
U
d
du

ln uþ1
γ

� �
ð14Þ

Putting β¼0 in Eq. (14) we have

v¼ αUu
1þγ Uu

¼ α
γ
� α
γ2

U
d
du

ln uþ1
γ

� �
ð15Þ

for the B-model. Eq. (12), referred to the C-model, needs none
preparatory transformation.

3. The integral criterion of nonlinearity

The area between the lines, v¼v(u) and v¼u, plotted in
normalized coordinates (u, v), is the measure of nonlinearity of
any monotonic relationship obtained on the basis of experimental
points (xj, yj) ∣ j¼1,…,N}; see Fig. 1. This area is expressed as
follows:

Ω¼
Z 1

0
v�uj jUdu¼

1
2�

R 1
0 vUdu for u Z vR 1

0 vUdu�1
2 for v Z u

8<
: ð16Þ

Then from Eqs. (12), (14) and (15) we get

θA ¼
Z 1

0
vUdu¼ β

2γ
þðα�1ÞðαþβÞ

γ2
U 1�1

γ
U ln αþβ

�� ��� �

for the A�model; γ ¼ αþβ – 1 ð17Þ

θB ¼
Z 1

0
vUdu¼ α

α� 1
� α
ðα � 1Þ2

U ln αj j for the B � model ð18Þ

θC ¼
Z 1

0
vUdu¼ αþ2

6
for the C�model ð19Þ

respectively. Then for uZv we get

ΩA ¼ 1
2�θA; ΩB ¼ 1

2�θB andΩC ¼ 1
2�θC

ðsee Eq: ð16ÞÞ: ð20Þ

4. Experimental part

4.1. Apparatus and reagents

All the calibration experiments were made according to poten-
tiometric titration mode, with use of ion-selective (1o) ammonium
(NH4-ISE), (2o) calcium (Ca-ISE), and (3o) fluoride (F-ISE) electro-
des, purchased in Eutech Instruments. Titrand D and titrant T were
freshly prepared in flasks (25 mL) where stock solutions of the
corresponding reagents, NH4Cl, CaCl2, NaF, KCl, CH3COOH, and
CH3COONa, each of pa purity, were introduced and filled up to the
mark with water. Doubly distilled water, with conductivity
approximately 0.18 mS/cm, was used for preparation of the solu-
tions and dilutions. In 2o, concentration of KCl (0.1 mol/L) was the
same in D and T. In 3o, D and T contained 10 mL of acetate buffer

Nomenclature

CCM Calibration curve method
D Titrand

ISE Ion-selective electrode
LSM Least squares method
T Titrant
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(pH¼5.0); this buffer was prepared in 25 mL flask by mixing
5.9 mL of 0.2 mol/L acetic acid and 14.1 mL of 0.2 mol/L sodium
acetate and filling up to the mark with water. For further experi-
mental details, see Table 1.

The potentiometric titrations were performed in 20 mL mea-
suring cell using a Cerko Lab System (potentiometer resolution
70.03 mV) equipped with a Hamilton syringe (5 mL), a magnetic
stirrer, temperature-controlled (resistance sensor Pt 1000,
70.1 1C) closed system, protected against an effect of carbon
dioxide and appropriate ion-selective electrode: (11) NH4-ISE,
(21) Ca-ISE, or (31) F-ISE. The electrodes were conditioned

according to Eutech recommendation before each titration. Titrant
was added in successive portions 0.050068 mL.

At jth point (Vj, Ej)│j¼1,…, N of the titration, Ej [mV] is the
potential related to total volume Vj of titrant T (C mol/L Xi) added into
V0 mL of titrand D (C0 mol/L Xi, see Table 1. Concentrations [X]j of the
corresponding ions in DþT were calculated from the formula

½X� j ¼ ðC0V0þCVjÞ=ðV0þVjÞ; pXj ¼ � log ½X�j ðj¼ 1;…;NÞ ð21Þ
We have [NH4

þ] ⪢ [NH3] in 1o, [Ca2þ] ⪢ [CaOHþ] in 2o, and [F�] ⪢
[HF] in 3o; [NH3]/[NH4

þ]¼10pH�9.35, [F�]/[HF]¼10pH�3.18, and
[CaOHþ]/[Ca2þ]¼10�12.7þpH [29].
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Fig. 1. The plots in (u, v) coordinates at (a) uZv and (b) vZu.

Table 1
Some experimental details involved with the calibrations; C0, C – concentrations of Xi in D and T, respectively.

i X-ISE Xi V0 (mL) C (mol/L) C0 (mol/L) Addition in D and T N

1 NH4-ISE NH4Cl 3 1.215�10�3 1.215�10�5 no addition 300
2 Ca-ISE CaCl2 2 5�10�4 0 0.1 M KCl 100
3 F-ISE NaF 2 5�10�4 5�10�6 acetate buffer, pH¼5.0 60
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Fig. 2. The curves of (a) E¼E(pNH4) for NH4-ISE, (b) E¼E(pCa) for Ca-ISE, and (c) E¼E(pF) for F-ISE.
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4.2. Results and discussion

The curves E¼E(pX) for (1o) X¼NH4, (2o) X¼Ca, and (3o) X¼F are
presented in Fig. 2. The δj¼Ej�Ej (cal) [mV] vs. pX relationships,
where Ej (cal) is the y¼E value calculated according to particular
models (A, B, C) at V¼Vj, are presented for NH4-ISE (Fig. 3), Ca-ISE
(Fig. 4) and F-ISE (Fig. 5). The related plots were obtained on the basis
of N experimental points, see Table 1. The related plots for v¼v(u)
functions (5), (11) and (12) are presented in Figs. 3–5. As were stated
below, within u A〈0, 1〉 we have uZv in 11 and 21, and vZu in 3o;
see Eq. (16) and Fig. 2a, b, and c. In every instance, all internal points
of the line v¼v(u) lie consistently on one side of the line v¼u,
irrespectively of the model applied. The values Ω¼ΩA, Ω¼ΩB and
Ω¼ΩC related to models A, B and C, applied to calibration of NH4-
ISE, Ca-ISE and F-ISE, are collected in Table 2.

The degree of fit δj¼Ej�Ej (cal) of the corresponding functions
E¼E(pX) to experimental data (pXj, Ej), see Eq. (21), is satisfactory,
especially for F-ISE (Fig. 5). It should be noticed that δj¼0.1 mV
corresponds to ΔpX ca. 0.1/60E0.0017 for univalent ions. The
δj values in acetate media were better (lower) than ones obtained

in TISAB media (not presented in this paper). It testifies on account
of usefulness of acetate buffer media for F-ISE confirmed in [30],
although acetate ions have not, anyway, the complexing properties
ascribed to components of TISAB [31,32]. It should be noted that
vZu for the curves v¼v(u) plotted for F-ISE, i.e. ΩA¼ΘA �½,
ΩB¼ΘB � ½, and ΩC¼ΘC �½.

Generally, the degree of fit is the best for the A-model, whereas
it is somewhat worse for the B-model and the C-model applied to
NH4-ISE and Ca-ISE (Figs. 3 and 4). However, in the case of F-ISE,
the models B and C are quite satisfactory (Fig. 5); the differences in
fit of the corresponding curves are there quite insignificant. This
results from the fact that F-ISE appears the best linearity among
the ISE's considered in this paper, and then the Ω value is
relatively small (see Table 2).

5. Final comments

In the paper [6] published lately, the rational functions of the
Padé type were applied for the standard addition method (SAM).
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Fig. 3. The Ej�Ej (cal) vs. pNH4 relationships and plots within normalized variables obtained for the models A, B and C applied to NH4-ISE calibration.
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The relevant functions used for the calibration curves (CCM)
contain the term a0 in the models A, B and C, whereas in SAM
the value a0¼0 is pre-assumed.

In the calculation procedure, a possible option to the (un-
weighted) LSM was an application of the weighed LSM (WLSM), i.
e, an application of a heteroskedascity instead of homoskedascity
postulate. However, the calibration points on the related graphs
exceed only one decade of concentrations, e.g. ca. 4.5�3.4¼1.1 for
X2¼Ca. From Fig. 4 we see that the error resulting from the
mismatch of the model to experimental points is within 70.1 mV
for the vast majority of experimental points, in the case where
rational models, A or B, are used for the Ca-ISE. From the
approximate formula AE¼0.03∙ΔpX (with Nernstian slope
assumed) it follows ΔpX¼710�4 /(3�10�2)E0.003; this value
is relatively small, even for a glass electrode (X¼H) of high quality,
where nominallyΔpH¼70.001, but 70.01 in practice. The biggest
disadvantage of WLSM is the fact that the theory behind this
method is based on the assumption that the weights are known
exactly. This is almost never the case in real applications, of course,
so estimated weights must be used instead. The weight expresses
the precision of the information contained in the associated
observation, at each data point. It is suggested that variances and

thenweights are based on replications, takingm replicate responses
at each point xj and then estimating the weights by the inverse of
the sample variances. When the weights are estimated from small
numbers of replicated observations, the results of an analysis can be
very badly and unpredictably affected. If the numberm of replicates
is large, this procedure is inefficient in practice. Weighted least
squares regression, like the other least squares methods, is also
sensitive to the effects of outliers.

Different kinds of ISE, including divalent (Ca2þ) and mono-
valent (NH4

þ} cations, and monovalent anion (F�) were considered
and their characteristics expressed by calibration curves in con-
centration range exceeding one decade were considered. In
reference to F-ISE and Ca-ISE, another models for calibration curve
were applied in [22].

The normalization suggested in this paper provides a uniform,
integral criterion of nonlinearity of curves obtained with use of
different methods of analysis, within different ranges of concen-
trations assumed for standard solutions, and made under physico-
chemical conditions pre-assumed in the analysis. It appears to be
far more general and more robust than the approaches to
nonlinearity criteria suggested elsewhere; see e.g. [33] and refer-
ences cited therein.
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Fig. 4. The Ej�Ej (cal) vs. pCa relationships and plots within normalized variables obtained for the models A, B and C applied to Ca-ISE calibration.
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Appendix A. Derivation of the formulas (5)–(8)

Setting (x, y)¼(x1, y1) into Eq. (2) we have

y1 ¼
a0þa1 Ux1þa2 Ux12

1þa3 Ux1
; i:e: y1þa3 Ux1y1 ¼ a0þa1 Ux1þa2 Ux12

ðA1Þ
Setting Eq. (4) into Eq. (2), and applying (A1) we obtain, by

turns

y1þvUΔy¼ a0þa1 U ðx1þuUΔxÞþa2 Uðx1þuUΔxÞ2
1þa3 U ðx1þuUΔxÞ ðA2Þ

y1þa3 Ux1y1þa3y1 UuUΔxþvUΔyþa3x1 UvUΔyþa3 UuUΔxUvUΔy

¼ a0þa1 Ux1þa1 UuUΔxþa2 Ux12þ2a2 Ux1 UuUΔxþa2 Uu2 U ðΔxÞ2
ðA3Þ

a3y1 UuUΔxþvUΔyþa3x1 UvUΔyþa3 UuUΔxUvUΔy

¼ a1 UuUΔxþ2a2 Ux1 UuUΔxþa2 Uu2 UðΔxÞ2 ðA4Þ
Further transformation of Eq. (A4) gives Eq. (5), with α, β, and γ

defined by Eqs. (6)–(8).
Transformation of formula (5) into (14)

v¼ αUuþβUu2

1þγ Uu
¼ βUuðuþα=βÞ

γ Uuþ1
¼ β=γ Uuðγuþαγ=βÞ

γ Uuþ1
¼ β=γ Uuðγuþ1þαγ=β�1Þ

γ Uuþ1

¼ β=γ Uuþβ=γ UuU ðαγ=β�1Þ
γ Uuþ1

¼ β
γ
Uuþβ

γ
U

αγ
β

�1
� �

U
1
γ
U
γ Uuþ1�1
γ Uuþ1

¼ β
γ
Uuþ 1

γ2
UðαUγ�βÞU 1� 1

γ Uuþ1

� �
¼ β

γ
UuþαUγ�β

γ2
�αUγ�β

γ3
U

1
uþ1=γ

Transformation of formula (11) into (15)

v¼ αUu
1þγ Uu

¼ αUu
γ Uuþ1

¼ α
γ
U

u
uþ1=γ

¼ α
γ
U
uþ1=γ�1=γ

uþ1=γ

¼ α
γ
U 1�1

γ
U

1
uþ1=γ

� �
¼ α
γ
� α
γ2

1
uþ1=γ

Appendix B. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.talanta.2014.02.027.
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